LOCAL HEATING OF AN ANISOTROPIC BODY BY A CIRCULAR HEAT SOURCE
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The solution and analysis of the two-dimensional nonstationary heat-conduc-
tion problem are presented for an anisotropic {orthotropic) body heated by a
circular heat source.

Kozlov [1] reported on an investigation of three-dimensional nonstationary temper-
ature fields originating in isotropic bodies heated by bounded heat sources of differ-
ent geometric shape. Let us consider a semibounded (in thermal respects) anisotropic (or-
thotropic) body to whose surface a specific heat flux of density q(t) arbitrary in time is
delivered through a given circular domain 0 ¢ r € ry (x = 0). Ideal heat insulation exists
on the remaining part of the surface x = 0, r > ry. In this problem cylindrical anisotropy
is examined, i.e., only in the directions of the cylindrical r, x coordinates are the heat
conductivity (A, and Ag), the thermal diffusivity (ay, ay), and the thermal activity (b, and
by) different from each other. We consider the bulk specific heats equal in the correspond-
ing directions, i.e., cyYy = cxYy. Therefore
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MATHEMATICAL FORMULATION OF THE PROBLEM

In conformity with the formulation of this problem, it is required to solve two differ-
ential heat-conduction equations of the form :
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under the initial conditions

T, %, 0)—Ty=0,(, %, 00=8,(r, x, 0)=Ts(r, ¥, ) —Ty =0 (3
and the boundary conditions
06:(r,0, v 9 0L r<<ry, >0, x =0),
ox )"x
E%KJLQ:00>%1>®,Q%QJLQ=0@>W
dx or (4)
06, (r, oo, T)_ 96, (r, oo, 1) . 00, (o0, x, T)~ 0
dx dx B or o
00, (ro, x, T) _ 00, (ry, ¥, T) , 0, (ro, %, 1) = Oy (ry, x, T).
or or

The general solution of this problem to determine the excess temperatures
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Oy (r, x, T)=To(r, x, ©)— Ty for r=>r, x>0, 1>>0,
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obtained by operator methods can be represented in the following form:
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The solution on the axes r = 0, x 2 0, T > 0 of an orthotropic body is expressed in
the form of the following quadrature:
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If the thermal diffusivity coefficients are ay =a,, then we have an analogous quadrature
for an isotropic body [1].

For x = 0 the corresponding temperature values at any point of the orthotropic body
surface are expressed in the form
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and Wk’u(x) is the Whittaker function.

For certain practical applications associated with thermophysical measurements, it is
expedient to present the expression for determination of the integrated surface temperature
0,0 < r<ry, 0, 1) =T,(0 <r <ry, 0, 1) =T, in the domain of the circle 0 < r < ¥, (x =
0):
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Let us assume that q(t — £) = q, = const in this domain (0 < r < ry, x = 0) is indepen-
dent of the time. Then by using (7)-(9), we find appropriate dependences to determine the
temperature

01 (0, x, )= 6,(0, x, T, O1(r, 0, ©) =6, (r, 0, VT,
@;V»O,ﬂ“”Qﬂﬁ(LTVﬂb

) (12)
————Gil (©, SLNLI ) = QVIEo-x {ierfc (————Kx_ > —
Ki, 2 VFo,
RIGEYH
—ierfc(——-—"——_—_—"—)} r=20, x>0 1>0),
2 VFo, ( _ =9
O:1(r, 0, 7) (1 1 K (13)
0, o
1 QVFOx — e e X —_ il b
Kix {Vrn  Vix P ( 8Fo, )
. K-a—l - ; —1
X (FO [<a)l/4 2 2 An szn { “—_—') W?n-—m 3 mn i (Ka }} (x = 0, 0<r<r0),
n=0 m=0 \ Ox T T Ty T T T 4F0x
* 2
eg(f, O, T): 1_ ( Fox )1/4K73/2exp<_ K ) % (14)
Kix _L/QR . Ka K 8F0xKa
2n—n . )
o & A 1 2 K
K"—m ‘”“_—‘) W‘)/l—m m ( )
,2' ,Z"o ( Fo.K, e, L2\ 4Fo,K,
x=0, r>r,
The dependence
07(0, Ky Fop/Kiy = 0}/Ki, = — 2% % D =T
Go’ol M

characterizes the change in the relative excess temperature on the axis r = 0, x 2 0 of the
orthotropic body under consideration heated by a circular heat source of constant intensity.
These dependences are represented in Fig. 1. Presented in Fig. la are data for the central
point of the heating spot (x = r = 0) as a function of the dimensionless time Foy =ay41/r,?
for fixed values of the parameter K,==a./@x. Analogous dependences for a specific point on
the axis r = 0, Ky = 0.5 are presented in Fig. 1b. The deduction can be made from the repre-
sented graphs that at the initial times Foy < 0.1 the temperature field development on the
axis r = 0, x 2 0 of the orthotropic body heated by a circular heat source of constant inten-
sity is determined completely by the thermophysical properties in the direction of the x
axis. The difference in the thermophysical properties in the direction of the r axis starts
to exert influence on the nature of the temperature change at any point of the axis r = 0

for Foy > 0.1. This deduction will later be used to determine the thermal activity by of
the body under consideration at the initial times. For Foy > 0.1 the parameter K==g,/a.

will exert considerable influence on the development of the temperature fields 0,%(0, Ky,
Foy)/Kiy. The functional influence of the parameter Ko on the formation of the temperature
fields 0:%(0, Ky, Foy)/Kiy is seen from Fig. 1. This influence will be estimated by means

of the relation to the dependence 0,%(0, Ky, Foy)/Kiy for Ko = 1, i.e., whenay =a, (A¢ =
Ar is the isotropic body case). The dependence 0;*(0, Ky, Foy)/Kiy in Fig. la corresponds
for X, = 1 to curve 9 and to curve 7 in Fig. 1b. All the dependences located above these
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Fig. 1. Dependence of ©,%(0, Ky, Foy)/Kiy for different val-
ues of Ka: a) for Ky = 0: 1) Ko =105 2) 9; 3) 7; 4) 63 5)
5; 6) 4; 7) 3; 8) 2; 9) 1; 10) 0.9; 11) 0.8; 12) 0.7; 13) 0.6;
14) 0.5; 15) 0.4; 16) 0.3; 17) 0.2; 18) K« = 0.1; b) for Ky =
0.5: 1) Ko =73 2) 63 3) 55 4) 43 5) 35 6) 2; 7) 1.05 8) 0.9;
9) 0.8; 10) 0.7; 11) 0.6; 12) 0.5; 13) 0.4; 14) 0.3; 15) 0.2;
16) 0.1.

curves (k, = 1) will correspond to the value of the parameter K,<1 (a,<a,), and the depen-
dences located below to the parameter K,>! (a.>>a;). The evident deduction follows that
agrees well with the physical perception of the anisotropic body under consideration: for
Ko<l (ar<@, A+<A:) the heat flux in the direction of the x axis predominates over the heat
flux in the radial direction, and therefore the absolute level of the values of the tempera-
ture 0,%(0, Ky, Foyx)/Kiy will be higher relative to the level of this temperature in an iso-
tropic (ay =ay) body. If a;>a. (Ke>1, Ax>hy), then the heat flux in the radial direction will
predominate over the axial (in the direction of the x axis) heat flux, and therefore, the ab-
solute level of the temperature 0,%(0, Ky, Foy)/Kiy will be below the corresponding tempera-
ture level for K, = 1.

If the limit cases of the change in the parameter K, are considered then we obtain:
For small values of K, (K,—0)

_0)(0, 0, 7) R
lim . = T/Fox, 15
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i.e., theoretically we have the one-dimensional case of changes in the relative temperature
0,%(0, 0, 1)/Kiy as a function of Foy;

For high values of K, (K,—»)

lim 20O, (?i__(”_lL =0, (16)
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Fig. 2. Dependence of the dimension-
less temperature on the relative coor-
dinate Ky = r/r, for fixed values of
Foy and K.=afar on the surface (x =
0) of an orthotropic body heated by a
constant intensity circular heat
source: 1) Fog=0.1, K. = 10; 2) 0.1
and 1; 3) 0.2 and 1; 4) 0.4 and 13 5)
1 and 1; 6) 1 and 0.5; 7) Foy = 1,
Ko = 0.1.
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Fig. 3. Dependence of N, = f(Ky, K., Fo,) on
the relationship K.: a) for Ky = 0.1 and Fo, =
0.1; b) for K¢ = 0.1 and Fo, = 0.2.

i.e., theoretically we have the two-dimensjonal limit case when the excess temperature at
the central heating point equals zero. In this limit case (ay » «) all the heat delivered
to the center will instantaneously be diverted in the radial direction.

The distribution of the dimensionless temperatures 0%(r, 0, 1)/Kiy on the surface (x =
0) of an orthotropic body heated by a circular heat source is shown in Fig. 2 as a function
of the parameters K¢, Ka, and Foy. As should have been expected, the absolute level of the
values of the temperatures 0%(r, 0, Foy)/Kiy over the section of constant intensity heat
source action depends substantially on the relationships of Ka. and Foy. A low absolute
value of the temperature 0*(r, 0, Foy)/Kiy on the heating surface of an orthotropic body by
a circular heat source corresponds to small times and large values of K. while higher abso-
lute levels corresponds to large times and small values of K.

Let us examine one of the possible versions of determining the thermophysical character-
istics (TFC) resulting from the solution of the problem (2)}-(4). Determination of the ther-
mal activity (bx) of an orthotropic body in the direction of the cylindrical coordinate x
can be realized in the initial times of the action (connection) of a low inertial (in thermal
respects) circular heater of constant power density q,. When T + 0 (Foyg, Fo, -+ 0), the argu-
ments Ka'l/z//AFoX, 1/4Fo, » =, here the limit values of the function ierfe(z) will tend to
zero as Z - o: limierfc(Z) - 0. It then follows from (12) that the relative excess tempera-

ture at the center point {x = r = 0) of the circular heater will be described by the expres-
sion
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Determination of the thermal diffusivity coefficient a, in the direction of the cylin-
drical coordinate r can be realized by different methods. The first method assumes that the

thermal activity by [computed in the initial stage of development of the temperature field
91(0, 0, T)]

. i A
jerfc —*:;?\ = Y‘ ‘ (19)
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The appropriate value of the argument 1/(2/Fo,.) or the number Fo, directly can be
found from this equation by means of known values of Y (for a given time t). Then

a, = o Fo (21)
T

e
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The second method of computing a, can be realized without knowledge of by by the ratio
of the temperatures at multiple times.

In order to determine the other thermophysical characteristics by, iy, 0 g, Ax of the
orthotropic body under consideration in the directions of the appropriate cylindrical coor-
dinates r and x, it is sufficient to find the ratios, either Ky = br/bx or K,=ua,/a,, since
the following identities are conserved for this hody:

Ki=hofhe = Ko = K&, K = VK, . (22)

The simplest method of determining the relationship Ko is to use the possibility of
measuring the temperature 0,(0, x, 1) on the axis r = 0 at a point removed a distance x = x;
from the heating surface. Then by using the dependence of the temperature 6,(0, 0, t) at
the center of the heating spot on the surface (r = x = 0) and at a given point x = x,; within
the body, the following ratio can be computed:

810, %3, W _ T1(0, x5, 9—T,
01 (0, 0, 7) T,0, 0, ) —T,
T TN
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Since the computation of the thermal diffusivity o, raises no difficulties, the numbers

Foyr =a,t/try? or For(t,) =a,1,/r,? will always be known for any time. For a fixed value of
K¢ = x/r, as a function of N, in (23), only the ratio £a=gq,/a, will be an unknown quantity.
The ratio N, is found from test. Then for specific values of N,, Ky, Fo,(t) by using the
graphs represented in Fig. 3, the appropriate value of K« can be found. Computation of the
thermal diffusivity gy is performed by means of the formula

Q= a,/Kq. (24)

The bulk specific heat cyyy = crY, and the heat conductivity Ay and A, are computed from
equations relating these characteristics when using the identities (22).

If the direction of the heat flux vectorq (1) when investigating the TFC of an ortho-
tropic body can vary in the space of the cylindrical coordinates r, x (i.e., local heating
of the body under consideration by a circular heat source can occur in experiment in the
direction of the axis r), then the thermal activity b, and the thermal diffusivity a, can
be measured in ‘an analogous manner (exactly the same as in the direction of the coordinate
%) without being inserted into the inner space of the orthotropic body.

NOTATION

0,(r, x, 1), 0,(r, x, T), excess temperatures in the correspondings domains of varia-
tion of the variable r (according to the text); r,, v, X, respectively, the radius of the
circle and the cylindrical coordinates; ay, Aps by, CyYps axs Agxs Dygs CxYy, thermal diffusiv-
ity, the thermal conductivity, and thermal activity, and the bulk specific heat in the r and
x coordinate directions; T, time; q(t), q¢, heat flux density; Kg =a,/as, Ky = Ar/AX, Ky =
by/by, parameters characterizing the relationships between the thermophysical properties in
the appropriate directions (r or x); s, p, parameters of the Laplace and Hankel integral
transforms; J_,/,(px), Bessel function of half order; Wy ,(x), Whittaker (degenerate hyper-
geometric) function; Apn,m» constant thermal amplitudes; Kr = t/ry, 0% = 0/Ty; T,, initial
temperature of the anisotropic body; Kig = qotoe/(AgTo), Fox =a,1/ry? and Ki, = qoro/(ATo),
Fo, = aprt/ro?, Kirpichev and Fourier criteria in the appropriate coordinate directions
(x and r); ierfe(x), multiple probability integral; Lvg(t) = qo/7/(byTy), Lykov criterion
[1]; N, an experimentally measurable parameter for the identification of the thermophysical
properties of an anisotropic body; I (X), I;(X), K,(X), K;(X), modified Bessel functions of
corresponding order; Ky = x/r,, a parameter characterizing the relationship between the run-
ning x coordinate and the radius r, of the heating spot,
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